
©Xcitium Inc. All Rights Reserved

Behind the Scenes
of Xcitium's Kernel
API Virtualization

ZeroDwell
Containment

Behind the Scenes of Xcitium’s Patented “Kernel API Virtualization”

When it comes to securing your enterprise endpoints, it’s important to have a foundational understanding
that there are three types of files: the good, the bad and the unknown. Approaches such as Antivirus (both
vendor-branded “next gen” and legacy detection-based), Blacklisting, and Whitelisting handle the known
good and the bad files – but what about the unknown files?

Regardless of the “next gen” nature and effectiveness of any new pre-execution, detection-based
solution, there will always be a certain number of unknown files, executables, and code that by default
are allowed to run on the host if not deemed malicious. The problem is that detection-based solutions
will never detect 100% of what is malicious, or 100% known to be good. Unknown files may be perfectly
harmless and required for system functionality, or they may be dangerous zero-day threats or APTs that
cause mega breaches and damage. Your cyber security solution must be able to detect the difference to
both prevent breaches and enable productivity.

Xcitium’s Solution: Kernel API Virtualization

A key component of Xcitium technology is Kernel API Virtualization, or ZeroDwell Containment. This
patented virtualization feature defeats zero-day attacks with no impact to the end user experience, and
does so better than any other security technology on the market today. Xcitium’s solution uses a
combination of kernel API virtualization, whitelisting, machine learning, behavior analysis, and advanced
static and dynamic threat cloud analysis (Xcitium Verdict Cloud) to accurately and quickly deliver a 100%
trusted verdict for unknown files and processes. Pre-execution, our technology authenticates every
executable and process that requests runtime privileges, and if not 100% known-good or known-bad, the
file or object is deemed unknown, and ushered inside a secure, virtual environment that does not allow
WRITE access to system resources or user data. This provides total protection against zero-day threats,
proactively prevents damage, and has no impact on end-user experience or workflows. Whether the
unknown files are malicious or safe, our technology is architected so they run and perform in auto-
containment just as well as they would on the actual host system. However, they cannot damage or
infect the systems because they cannot access the underlying system. This allows safe applications the
freedom to run as needed while denying malicious applications the system access they need to deliver
their payloads.

This protection is achieved by introducing a virtalization layer between processes running an unknown
executable with Kernel functions. We have introduced 5 main virtualization components that filter any
relevant Kernel calls or callbacks:

 File System
 Registry
 Kernel Object
 Service
 DCOM/RPC

These are the main virtualization components that run both user and kernel mode, handle necessary
interrupts, and implement all necessary filter drivers to fulfill requests in virtualization (which is not a
sandbox).

File System Virtualization is a good example for understanding this. File System virtualization is an
abstraction layer between a File System and the client programs that access those files. It provides a logical
view of the files. By using redirection techniques, a client program’s access to a physical file is redirected
to a virtual file, which prevents malicious programs modifying system files, and this also isolates
operations to the file. The client program doesn’t need to be concerned with the details of file
virtualization; it is completely transparent.

This type of virtualization can only be done at kernel level via file system filter drivers, where we can
capture all relevant events, modify them, or redirect them as necessary. The routines we have captured
and virtualized are: file creation, file read, file write and file change. Let’s take file creation event as an
example and summarize what routines should be captured and their interactions.

PreCreateFile routine executes when any process wants to access a Kernel for file create operations,
and according to input parameters, there are two cases: create a new file or open an existing file.

Create File
The following figure shows the interaction of file creation virtualization:

Pre-Create File
Create File (User-Mode)

Create Virtual File File System

Create File

Create Virtual File

Complete Create Virtual File

Complete Create File

Create a virtual file

Return Shadow File Object

Re-fill the User File Object with the Shadow File Object

Save the User File Object and the Shadow File Object

Open Existing File
The following figure shows the interaction of file opening virtualization:

Pre-Create File
Create File (User-Mode)

File System

Return Shadow File Object

Re-fill the User File Object with the Shadow File Object

Save the User File Object and the Shadow File Object

Open a real file

Open File

Complete Open File

The following figure shows the main flow of the create file operation:

PreCreateFile

Check if need Thread
virtualization or not

Check if in exclusion
list or not

Parse the virtual file name

If need to create a new file

Create a virtual file with
virtual file name and return

the ShadowFileObject

Re-fill the UserFileObject fields
with the ShadowFileObject

fields

Open a existing file with real
file name and return the

ShadowFileObject

Return the status

The status is
passthrough

N

Y

Y

N

Y N

As shown in the figure, the PreCreateFile routine summarizes the following list:

1. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
2. Check if the thread which creates or opens the file needs to be virtualized. If it needn’t be

virtualized, bypass. Otherwise go to step 3.
3. Retrieve the full path information for the accessed file, and parse the virtual file name.
4. Verify that the operation is to create a new file or open an existing file. If it is to create a new file,

go to step 5. Otherwise go to step 6.

5. Create a virtual file in the virtual file storage, and return the ShadowFileObject that points to the
virtual file. Re-fill the UserFileObject fields with the ShadowFileObject fields.

6. Open an existing file, and return the ShadowFileObject which points to the real file. Re-fill the
UserFileObject fields with the ShadowFileObject fields.

Virtual File Maintenance
The file virtualization component uses a virtual file tree in memory to maintain the virtual files. We use
this tree to cache virtual files and record states of virtual files, like deletion, renaming, etc. Following is
the definition of the virtual file tree node:

typedef struct _SB_VIRTUAL_FILE_TREE_NODE
{

UNICODE_STRING Name;
ULONG Flags;

SB_VIRTUAL_FILE_TREE_NODE * Parent;
SB_VIRTUAL_FILE_TREE_NODE * Child;
PRTL_SPLAY_LINKS Brothers;
……

} SB_VIRTUAL_FILE_TREE_NODE, *PSB_VIRTUAL_FILE_TREE_NODE;

SB_VIRTUAL_FILE_TREE_NODE structure describes the directory (file) structure of virtual files. The
following figure shows the virtual files on the virtual file tree (“\HarddiskVolume1\Dir1\File.txt” and
“\HarddiskVolume1\Dir2”).

The virtual file tree node is created when a process creates or opens a file in PreCreateFile routine. If it
creates a new file, the file virtualization component redirects the operation into the virtual file storage
(create a new virtual file) and then marks the Flags field as FV_FLAGS_VIRTUALIZED. If it opens an
existing file, the file virtualization component marks the Flags field as FV_FLAGS_NOT_VIRTUALIZED.

When a process intends to delete (or rename) a file on disk, if the file has been virtualized before, the
virtual file is deleted (or renamed) instead of the real one. After the operation is complete, the virtual
file tree will be updated. On the contrary, if the file has not been virtualized before, it means the process

Parent File.txt Child

Parent Child Dir2 Parent Child Dir1

Brothers Parent Child HarddiskVolume1

Brothers Brothers

Brothers

wants to delete (or rename) a real file on disk, so no files are actually deleted (or renamed). We only
mark the Flags field as FV_FLAGS_DELETED on the virtual file tree node.

When a process wants to enumerate a directory to get files in the directory, we hide the files marked for
deletion.

After all the processes that access the same file name exit, the virtual file tree node instance is freed.
Note that the nodes that have been marked for deletion could not be freed in order to mark the deleted
files in the future.

File System Virtualization:

File System virtualization is an abstraction layer between the File System and the client programs that
access those files. It provides a logical view of the files. By using redirection techniques, some client
programs access to the physical file is redirected to a virtual file, which prevents malicious programs
modifying system files and isolates the operations to the files. These client programs do not need to be
concerned with the details of file virtualization; it is completely transparent.

Again, this type of virtualization can only be done at the kernel level via file system filter drivers, where
we can capture all relevant events, modify them, or redirect them as necessary. The routines we have
captured and virtualized are: file creation, file read, file write, change. First, let’s summarize what
routines should be captured and their interactions.

PreCreateFile
In PreCreateFile routine, according to input parameters, there are two cases: create a new file or open
an existing file.

Create File
The following figure shows the interaction on file creation virtualization:

Pre-Create File
Create File (User-Mode)

Create Virtual File File System

Create File

Create Virtual File

Complete Create Virtual File

Complete Create File

Create a virtual file

Return Shadow File Object

Re-fill the User File Object with the Shadow File Object

Save the User File Object and the Shadow File Object

Open File
The following figure shows the interaction on file opening virtualization:

Pre-Create File
Create File (User-Mode)

File System

Return Shadow File Object

Re-fill the User File Object with the Shadow File Object

Save the User File Object and the Shadow File Object

Open a real file

Open File

Complete Open File

The following figure shows the main flow of the create file operation:

PreCreateFile

Check if need Thread
virtualization or not

Check if in exclusion
list or not

Parse the virtual file name

If need to create a new file

Create a virtual file with
virtual file name and return

the ShadowFileObject

Re-fill the UserFileObject fields
with the ShadowFileObject

fields

Open a existing file with real
file name and return the

ShadowFileObject

Return the status

The status is
passthrough

N

Y

Y

N

Y N

As shown in the figure, the PreCreateFile routine summarizes in the following list:

7. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
8. Check if the thread which creates or opens the file needs to be virtualized. If it needn’t to be

virtualized, bypass. Otherwise go to step 3.
9. Retrieve the full path information for the accessed file, and parse the virtual file name.
10. Check the operation is to create a new file or opens an existing file. If it is to create a new file, go to

step 5. Otherwise go to step 6.
11. Create a virtual file in the virtual file storage, and return the ShadowFileObject which points to the

virtual file. Re-fill the UserFileObject fields with the ShadowFileObject fields.

12. Open an existing file, and return the ShadowFileObject which points to the real file. Re-fill the
UserFileObject fields with the ShadowFileObject fields.

PreReadFile
The following figure shows the interaction on file reading virtualization (The file has not been
virtualized).

File SystemRead File(User Mode) Pre-Read File

Complete the read

Read data from a real file

Query and return the file has not been virtualized

Read File

Complete Read File

The following figure shows the interaction on file reading virtualization (the file has been virtualized).

File SystemRead File(User Mode) Pre-Read File

Query and return the file has been virtualized

Complete the read

Complete Read File

Read File

Read data from a virtual file

The following figure shows the main flow of the read file operation:

PreReadFile

Check if need Thread
virtualization or not

Check if in exclusion
list or not

Read data by the
ShadowFileObject

Return the status

The status is
passthrough

N

Y

Y

N

Retrieve the virtual stream
context from the virtual file tree

Retrieve the ShadowFileObject
from the virtual stream context

As shown in the figure, the PreReadFile routine summarizes in the following list:

1. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
2. Check if the thread which reads from the file needs to be virtualized. If it needn’t to be virtualized,

bypass. Otherwise go to step 3.
3. Retrieve the SB_VIRTUAL_STREAM_CONTEXT instance from the virtual file tree.
4. Retrieve the ShadowFileObject from the SB_VIRTUAL_STREAM_CONTEXT instance.If the file has

been virtualized, the ShadowFileObject points to the virtual file. Otherwise it points to the real file.
5. Read data by the ShadowFileObject.

PreWriteFile
The following figure shows the interaction on file writing virtualization.

File System
Write File(User-Mode)

Pre-Write File Create Virtual File

Return Shadow File Object(Virtual File)

Complete the write

Write data to a virtual file

Write File

Return Write File

Create Virtual File

Create a virtual file

Return Shadow File Object(Virtual File)

File Object Synchronization Update

The following figure shows the main flow of the write file operation:

PreWriteFile

Check if need Thread
virtualization or not

Check if in exclusion
list or not

Write data by the
ShadowFileObject

Return the status

The status is
passthrough

N

Y

Y

N

Virtualize the file and return the
ShadowFileObject

Perform File Object
Virtualization

As shown in the figure, the PreWriteFile routine summarizes in the following list:

1. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
2. Check if the thread which writes to the file needs to be virtualized. If it needn’t to be virtualized,

bypass. Otherwise go to step 3.
3. Create a virtual file in the virtual file storage and return the ShadowFileObject. The

ShadowFileObject points to the virtual file.
4. Perform file object virtualization. The file objects which have been opened before re-points to the

virtual file.
5. Write data by the ShadowFileObject.

PreSetInformationFile
In PreSetInformationFile routine, according to input parameters, there are two cases: delete a file or
rename a file.

File Deletion
The following figure shows the interaction on file deletion virtualization (the file has not been
virtualized).

File System
Delete File(User-Mode)

Pre-SetInformationFile Pre-Cleanup

Mark the file delete flag

Query and return the file has not been virtualized

Delete File

Complete Delete File

The following figure shows the interaction on file deletion virtualization (The file has been virtualized).

File System
Delete File(User-Mode)

Pre-SetInformationFile Pre-Cleanup

Close the file handle

Delete the virtual file

Complete the delete

Complete the close

Mark the file delete flag

Query and return the file has been virtualized

Delete File

Complete Delete File

The following figure shows the main flow of the delete file operation:

PreSetInformationFile
(Delete)

Check if need Thread
virtualization or not

Check if in exclusion
list or not

Return the status

The status is
passthrough

N

Y

Y

N

Mark the file deleted flag on the
virtual file tree node

PreCleanup
(Delete)

Check if need Thread
virtualization or not

Check if in exclusion
list or not

Return success status

N

Y

Y

N

Sand a request to delete the file
to file system

Check if the file has been
 marked for deletion

Cleanup resources

N

Y

Check if the file has been
 virtualized

Y

N

As shown in the figure, the PreSetInformationFile(Delete) routine summarizes in the following list:

1. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
2. Check if the thread which deletes the file needs to be virtualized. If it needn’t to be virtualized,

bypass. Otherwise go to step 3.
3. Mark the file delete flag on the virtual file tree node.
4. In PreCleanup operation, if the file has been virtualized and has been marked for deletion, then

sand a request to delete the file to file system.

File Renaming
The following figure shows the interaction on file renaming virtualization (the file has not been
virtualized).

File SystemPre-SetInformationFile
Rename File(User-Mode)

Create the virtual dir and a dummy file

Complete the create

Mark the file rename flag

Query and return the file has not been virtualized

Rename File

Complete Rename File

The following figure shows the interaction on file renaming virtualization (The file has been virtualized).

File SystemPre-SetInformationFile
Rename File(User-Mode)

Rename the virtual file

Complete the rename

Query and return the file has been virtualized

Rename File

Complete Rename File

The following figure shows the main flow of the rename file operation:

PreSetinformationFile
(Rename)

Check if need Thread
virtualization or not

Check if in exclusion
list or not

If the file has been virtualized

Rename the virtual file

Mark the file renamed flag

Create a dummy file in the
virtual file storage

Return the status

The status is
passthrough

N

Y

Y

N

Y N

As shown in the figure, the PreSetInformationFile(Rename) routine summarizes in the following list:

1. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
2. Check if the thread which renames the file needs to be virtualized. If it needn’t to be virtualized,

bypass. Otherwise go to step 3.
3. If the file has been virtualized, rename the virtual file. Otherwise create a dummy file in the virtual

file storage. The dummy file is not a virtual file. It has the same attributes and size with the real file.
It is only a placeholder for the PreDirectoryControl operation. The dummy file can improve the
performance for the rename operation because it doesn’t copy data from the real file and only set
the file attributes and size to the dummy file.

PreDirectoryControl
The following figure shows the interaction on directory control virtualization:

Pre-DirectoryControl
Query Directory Information

(User-Mode)

Query Directory

Merger Information

File System

Query Real Directory

Return the query real directory

Query Virtual Directory

Return the query virtual directory

Complete Query Directory

The following figure shows the main flow of the directory control operation:

PreQueryDirectory

Merger the results

Return the status

Query the real directory on disk

Query the virtual directory in
the virtual file storage

As shown in the figure, the PreDirectoryControl routine summarizes in the following list:

1. Query the real file information in the real directory on disk.
2. Query the virtual file information in the virtual file storage.
3. Merger the query results (include dummy files and exclude duplicate files).

PreCleanup
The following figure shows the interaction on file cleanup virtualization.

File System
Close File Handle(User

Mode) Pre-Cleanup

Delete the virtual file which marked for deletion

Return the delete operation

Cleanup Resources

Close File Handle

Complete Close File Handle

The following figure shows the main flow of the cleanup operation:

PreCleanup

Check if need Thread
virtualization or not

Check if in exclusion
list or not

Return success status

N

Y

Y

N

Sand a request to delete the file
to file system

Check if the file has been
 marked deleted flag

Cleanup resources

N

Y

Check if the file has been
 virtualized

Y

N

Close the ShadowFileObject

As shown in the figure, the PreCleanup routine summarizes in the following list:

1. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
2. Check if the thread which operates cleanup needs to be virtualized. If it needn’t to be virtualized,

bypass. Otherwise go to step 3.

3. If the file has been virtualized and has been marked for deletion, then sand a request to delete the
file to file system.

4. Close the ShadowFileObject which is created in the PreCreateFile operation.

Cleanup other resources.

Registry Virtualization:

Registry virtualization is handled similarly to File System Virtualization on the Filter Driver level. We
capture all necessary registry events.

©XCITIUM INC. ALL RIGHTS RESERVED

AWARDS & RECOGNITION

SALES
US: 646-569-9114

CA: 613-686-3060

EMAIL
sales@xcitium.com

support@xcitium.com

VISIT
200 Broadacres Drive,
Bloomfield, NJ 07003
United States

OUR CUSTOMERS

Xcitium, formerly known as Comodo Security Solutions, is used by more than 3,000
organizational customers & partners around the globe. Xcitium was founded with
one simple goal – to put an end to cyber breaches. Our patented Xcitium Essentials
ZeroDwell technology uses Kernel-level API virtualization to isolate and remove threats
like zero-day malware & ransomware before they cause any damage to any endpoints.
ZeroDwell is the cornerstone of Xcitium’s endpoint suite which includes pre-emptive
endpoint containment, endpoint detection & response (EDR), managed detection
& response (MDR), and managed extended detection and response (M/XDR). Since
inception, Xcitium has a track record of zero breaches when fully configured.

	What is behind scenes of Xcitium’s patented “Kernel API Virtualization”?
	Xcitium’s Solution: Kernel API Virtualization
	Create File
	Open Existing File

	Virtual File Maintenance
	File System Virtualization:
	PreCreateFile
	Create File
	Open File

	PreReadFile
	PreWriteFile
	PreSetInformationFile
	File Deletion
	File Renaming

	PreDirectoryControl
	PreCleanup

	Registry Virtualization:

