¢

Xclttium

Behind the Scenes
of Xcitium's Kernel
API Virtualization

ZeroDwell
Containment *

©Xcitium Inc. All Rights Reserved

Behind the Scenes of Xcitium’s Patented “Kernel API Virtualization”

When it comes to securing your enterprise endpoints, it’s important to have a foundational understanding
that there are three types of files: the good, the bad and the unknown. Approaches such as Antivirus (both
vendor-branded “next gen” and legacy detection-based), Blacklisting, and Whitelisting handle the known
good and the bad files — but what about the unknown files?

Regardless of the “next gen” nature and effectiveness of any new pre-execution, detection-based
solution, there will always be a certain number of unknown files, executables, and code that by default
are allowed to run on the host if not deemed malicious. The problem is that detection-based solutions
will never detect 100% of what is malicious, or 100% known to be good. Unknown files may be perfectly
harmless and required for system functionality, or they may be dangerous zero-day threats or APTs that
cause mega breaches and damage. Your cyber security solution must be able to detect the difference to
both prevent breaches and enable productivity.

Xcitium’s Solution: Kernel API Virtualization

A key component of Xcitium technology is Kernel API Virtualization, or ZeroDwell Containment. This
patented virtualization feature defeats zero-day attacks with no impact to the end user experience, and
does so better than any other security technology on the market today. Xcitium'’s solution uses a
combination of kernel API virtualization, whitelisting, machine learning, behavior analysis, and advanced
static and dynamic threat cloud analysis (Xcitium Verdict Cloud) to accurately and quickly deliver a 100%
trusted verdict for unknown files and processes. Pre-execution, our technology authenticates every
executable and process that requests runtime privileges, and if not 100% known-good or known-bad, the
file or object is deemed unknown, and ushered inside a secure, virtual environment that does not allow
WRITE access to system resources or user data. This provides total protection against zero-day threats,
proactively prevents damage, and has no impact on end-user experience or workflows. Whether the
unknown files are malicious or safe, our technology is architected so they run and perform in auto-
containment just as well as they would on the actual host system. However, they cannot damage or
infect the systems because they cannot access the underlying system. This allows safe applications the
freedom to run as needed while denying malicious applications the system access they need to deliver
their payloads.

Unknown Executable

Virtuakzation Layer

Restriction Layar

File System
Viruslization

Registry
Virtualization

Hamal Objzct
Virualization

Service
Virtualization

DCOM and RPC
Virtuslization

CPU and Memory Restrictions

Device Driver Restrictions.

API Restrictions

Permission Restrictions

VO Manager

Registry Manager

Object Manager

I ———

File System Filter Driver

Registry Fiiter Driver

File System Driver

Registry Driver

Storage Devios Driver

[Process Monitors

Kamal

User
Mode

Karmel
Mode

This protection is achieved by introducing a virtalization layer between processes running an unknown
executable with Kernel functions. We have introduced 5 main virtualization components that filter any
relevant Kernel calls or callbacks:

= File System

= Registry

= Kernel Object
= Service

= DCOM/RPC

These are the main virtualization components that run both user and kernel mode, handle necessary
interrupts, and implement all necessary filter drivers to fulfill requests in virtualization (which is not a

sandbox).

File System Virtualization is a good example for understanding this. File System virtualization is an
abstraction layer between a File System and the client programs that access those files. It provides a logical
view of the files. By using redirection techniques, a client program’s access to a physical file is redirected
to a virtual file, which prevents malicious programs modifying system files, and this also isolates
operations to the file. The client program doesn’t need to be concerned with the details of file
virtualization; it is completely transparent.

The File has not been virtualized The File has been virtualized
Process Process
User mode User mode
Kernel mode Kernel mode
File access File access
File Virtualization Component File Virtualization Component
\ 4
UserFileObject —J» ShadowfFileObject UserFileObject —J»| ShadowfFileObject
Disk Disk
i (R (N (P A A
| 1
Real File Storage | Virtual File Storage | Real File Storage | Virtual File Storage |
__________ | —— e

This type of virtualization can only be done at kernel level via file system filter drivers, where we can
capture all relevant events, modify them, or redirect them as necessary. The routines we have captured
and virtualized are: file creation, file read, file write and file change. Let’s take file creation event as an
example and summarize what routines should be captured and their interactions.

PreCreateFile routine executes when any process wants to access a Kernel for file create operations,
and according to input parameters, there are two cases: create a new file or open an existing file.

Create File

The following figure shows the interaction of file creation virtualization:

Create File (User-Mode)

Pre-Create File

Create Virtual File File System

Create File

|
|
»
»

|
|
L
|
|
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|

|

|

|

|

|

Complete Create File}
I

Kommmmmmmmm o

Open Existing File

Create Virtual File

R

I
Complete Create Virtual File

Create a virtual file

N

|
L
} Return Shadow File Object
I
f

l
T
;:::::::) Re—fill the User File Object with the Shadow File Object
I
I
I
I

Save the User File Object and the Shadow File Object

The following figure shows the interaction of file opening virtualization:

Create File (User-Mode)

Pre-Create File File System

Open File

Complete Open File

i:::::::) Re-fill the User File Object with the Shadow File Object
|

> Save the User File Ol;ject and the Shadow File Object
I

The following figure shows the main flow of the create file operation:

PreCreateFile

_— Checkifinexclusion Y
list or not
N
//// \\\
o ~—
___— Checkifneed Thread N
virtualization or not
Parse the virtual file name
Y - T N
— . T
— If need to create a new file =
\ 4 \ 4
Create a virtual file with Open a existing file with real
virtual file name and return file name and return the
the ShadowFileObject ShadowfFileObject
\ 4 ;
Re-fill the UserFileObject fields The status is
with the ShadowFileObject
fields passthrough

|

| Return the status

As shown in the figure, the PreCreateFile routine summarizes the following list:

Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
Check if the thread which creates or opens the file needs to be virtualized. If it needn’t be
virtualized, bypass. Otherwise go to step 3.

3. Retrieve the full path information for the accessed file, and parse the virtual file name.

4. Verify that the operation is to create a new file or open an existing file. If it is to create a new file,
go to step 5. Otherwise go to step 6.

5. Create a virtual file in the virtual file storage, and return the ShadowFileObject that points to the
virtual file. Re-fill the UserFileObject fields with the ShadowFileObject fields.
6. Open an existing file, and return the ShadowFileObject which points to the real file. Re-fill the

UserFileObject fields with the ShadowFileObject fields.

Virtual File Maintenance

The file virtualization component uses a virtual file tree in memory to maintain the virtual files. We use
this tree to cache virtual files and record states of virtual files, like deletion, renaming, etc. Following is
the definition of the virtual file tree node:

typedef struct SB VIRTUAL FILE TREE NODE
{

UNICODE STRING Name;

ULONG Flags;
SB_VIRTUAL FILE TREE NODE * Parent;
SB_VIRTUAL FILE TREE NODE * Child;

PRTL SPLAY LINKS

} SB_VIRTUAL FILE TREE NODE,

Brothers;

*PSB_VIRTUAL FILE TREE NODE;

SB_VIRTUAL_FILE_TREE_NODE structure describes the directory (file) structure of virtual files. The
following figure shows the virtual files on the virtual file tree (“\HarddiskVolume1\Dir1\File.txt” and

“\HarddiskVolume1\Dir2”).

HarddiskVolumel Brothers Parent Child
V:\ ______
v ST ——
Dirl Brothers Parent Child Dir2 Brothers Parent Child
¥l A
\4 \\\\
File.txt Brothers Parent Child

The virtual file tree node is created when a process creates or opens a file in PreCreateFile routine. If it
creates a new file, the file virtualization component redirects the operation into the virtual file storage
(create a new virtual file) and then marks the Flags field as FV_FLAGS_VIRTUALIZED. If it opens an
existing file, the file virtualization component marks the Flags field as FV_FLAGS_NOT_VIRTUALIZED.

When a process intends to delete (or rename) a file on disk, if the file has been virtualized before, the
virtual file is deleted (or renamed) instead of the real one. After the operation is complete, the virtual
file tree will be updated. On the contrary, if the file has not been virtualized before, it means the process

wants to delete (or rename) a real file on disk, so no files are actually deleted (or renamed). We only
mark the Flags field as FV_FLAGS_DELETED on the virtual file tree node.

When a process wants to enumerate a directory to get files in the directory, we hide the files marked for
deletion.

After all the processes that access the same file name exit, the virtual file tree node instance is freed.
Note that the nodes that have been marked for deletion could not be freed in order to mark the deleted
files in the future.

File System Virtualization:

File System virtualization is an abstraction layer between the File System and the client programs that
access those files. It provides a logical view of the files. By using redirection techniques, some client
programs access to the physical file is redirected to a virtual file, which prevents malicious programs
modifying system files and isolates the operations to the files. These client programs do not need to be
concerned with the details of file virtualization; it is completely transparent.

The File has not been virtualized The File has been virtualized
Process Process
|
User mode User mode
Kernel mode Kernel mode
File access File access
File Virtualization Component File Virtualization Component
v ; 4
UserFileObject —p» ShadowfFileObject UserFileObject —p»{ ShadowFileObject
\ A ok 1l |] \ A
| |
Real File Storage | Virtual File Storage | Real File Storage | Virtual File Storage |
__________ | ————e e e

Again, this type of virtualization can only be done at the kernel level via file system filter drivers, where
we can capture all relevant events, modify them, or redirect them as necessary. The routines we have
captured and virtualized are: file creation, file read, file write, change. First, let’s summarize what
routines should be captured and their interactions.

PreCreateFile

In PreCreateFile routine, according to input parameters, there are two cases: create a new file or open
an existing file.

Create File
The following figure shows the interaction on file creation virtualization:

Create File (User-Mode)
Pre-Create File Create Virtual File File System

Create File
I

|
|
»
Create Virtual File

R

Create a virtual file

NN ___

|
L
} Return Shadow File Object
I
f

l
T
;:::::::) Re-fill the User File Object with the Shadow File Object
I
I
I
I

Save the User File Object and the Shadow File Object
I

I
I
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| Complete Create Virtual File
I

I

I

Complete Create File}
I

Kommmmmmmmm o

Open File

The following figure shows the interaction on file opening virtualization:

Create File (User-Mode)
Pre-Create File File System

Open File

Open a real file

Return Shadow File Object

el

Save the User File Object and the Shadow File Object

D Re-fill the User File Object with the Shadow File Object
|

|

|

1

>

|

1
|
Koo |
|
|

The following figure shows the main flow of the create file operation:

PreCreateFile

— —

" Checkifinexclusion Y
list or not
N
//////// \\\\\\\
_— Checkifneed Thread N

—

virtualization or not

Parse the virtual file name

T
—\If need to create a new file ——

\ 4 \ 4
Create a virtual file with Open a existing file with real
virtual file name and return file name and return the
the ShadowFileObject ShadowfFileObject

A\ 4 ;

Re-fill the UserFileObject fields
with the ShadowFileObject
fields

The status is
passthrough

|

| Return the status

As shown in the figure, the PreCreateFile routine summarizes in the following list:

7. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.

8. Check if the thread which creates or opens the file needs to be virtualized. If it needn’t to be
virtualized, bypass. Otherwise go to step 3.

9. Retrieve the full path information for the accessed file, and parse the virtual file name.

10. Check the operation is to create a new file or opens an existing file. If it is to create a new file, go to
step 5. Otherwise go to step 6.

11. Create a virtual file in the virtual file storage, and return the ShadowFileObject which points to the
virtual file. Re-fill the UserFileObject fields with the ShadowFileObject fields.

12. Open an existing file, and return the ShadowFileObject which points to the real file. Re-fill the
UserFileObject fields with the ShadowFileObject fields.

PreReadFile

The following figure shows the interaction on file reading virtualization (The file has not been
virtualized).

Read File(User Mode) Pre-Read File File System

Read File

Query and return the file has not been virtualized

Read data from a real file

T T
| |
| |
P |
| |
| |
|
|
|
|
|
I
: Complete the read
|
f

Complete Read File :
K=o :
|
|

The following figure shows the interaction on file reading virtualization (the file has been virtualized).

Read File(User Mode) Pre-Read File Eile System
: Read File :
L 1 gl
| | |
| | |
| |
: : Query and return the file has been virtualized
| |
: | Read data from a virtual file |
| I »
: : Complete the read
| o mmmm e
| |
| |

Complete Read File
e ——

The following figure shows the main flow of the read file operation:

-

(PreReadFile)

_ ~ Check if in exclusion \\\\ Y
I|st or not

N

_— Check if need Thread \‘\\\
~~ V|rtuaI|zat|on or not

T

Retrieve the virtual stream
context from the virtual file tree

T —

\

\ 4

Retrieve the ShadowFileObject
from the virtual stream context

\ 4 A4

Read data by the The status is
ShadowfFileObject passthrough

| Returnthestatus |

As shown in the figure, the PreReadFile routine summarizes in the following list:

Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
Check if the thread which reads from the file needs to be virtualized. If it needn’t to be virtualized,
bypass. Otherwise go to step 3.

3. Retrieve the SB_VIRTUAL_STREAM_CONTEXT instance from the virtual file tree.

4. Retrieve the ShadowFileObject from the SB_VIRTUAL STREAM_CONTEXT instance.If the file has
been virtualized, the ShadowFileObject points to the virtual file. Otherwise it points to the real file.

5. Read data by the ShadowFileObject.

PreWriteFile

The following figure shows the interaction on file writing virtualization.

Write File(User-Mode)
Pre-Write File Create Virtual File File System
Write File

Create Virtual File

Yy]

Create a virtual file

00 N
Return Shadow File Object(Virtual File)

¥V _ |

Return Shadow File ObJect(Vlrtpal File)

T

) |
i File Object:Synchronization quate
: Write data to a }irtual file i
»
: Complete thé write i
Return Write File k?— ————————————— F ——————————— {
S 4 | |

The following figure shows the main flow of the write file operation:

-

(PreWriteFile)

—

_— Checkifinexclusion T
. =
list or not -

— T N

" Checkifneed Thread

~ irtualization or not //\
—_vir B
— /

Virtualize the file and return the
ShadowfFileObject

\ 4

Perform File Object
Virtualization

\ 4 A4

Write data by the The status is
ShadowfFileObject passthrough

| Returnthestatus |

As shown in the figure, the PreWriteFile routine summarizes in the following list:

Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
Check if the thread which writes to the file needs to be virtualized. If it needn’t to be virtualized,
bypass. Otherwise go to step 3.

3. Create avirtual file in the virtual file storage and return the ShadowFileObject. The
ShadowFileObject points to the virtual file.

4. Perform file object virtualization. The file objects which have been opened before re-points to the
virtual file.

5. Write data by the ShadowFileObject.

PreSetinformationFile
In PreSetIinformationFile routine, according to input parameters, there are two cases: delete a file or
rename a file.

File Deletion
The following figure shows the interaction on file deletion virtualization (the file has not been
virtualized).

Delete File(User-Mode)

Pre-SetinformationFile Pre-Cleanup File System

Delete File

Query and return the file has not been virtualized

i
|
|
Mark the file delete flag
|
Complete Delete File
|
|
|
|

The following figure shows the interaction on file deletion virtualization (The file has been virtualized).

Delete File(User-Mode))
Pre-SetinformationFile Pre-Cleanup File System

Delete File

T
|
|
>
»

Query and return the file has been virtualized

vV

| |
| |

| |

| |

' |

Mark the file delete flag
| |

| |

| |

| |

| |

| |

K |

K—“““““““Tﬁ
| Close the file handle
L | !
: : Delete the virtual file
| | | |
| R —
: : Complete the delete
: . E—— .
| Complete the close : :
k&— ——————————————— fomm e ——— 4 :

The following figure shows the main flow of the delete file operation:

(/PreSetInformation Fila
(Delete)

/// g . T
_— Check if in exclusion =

—

\list or not

- —

virtualization or not

/////(;heck if need Thread T

) 4
Mark the file deleted flag on the The status is
virtual file tree node passthrough

\ 4

- N
Return the status

N

—

/ PreCleanup \]

{

(Delete)
_— - \\\\\\\
//////Check if in exclusion \\\\\\ Y
\list or not
N
T~ N
__— Checkif need Thread

virtualization or not

__— Check if the file has be\e\ﬁ\\\\\

Nrtualized

___— Check if the file has been ——__
marked for deletion

Sand a request to delete the file
to file system

Cleanup resources

| Return success status |

As shown in the figure, the PreSetInformationFile(Delete) routine summarizes in the following list:

Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
Check if the thread which deletes the file needs to be virtualized. If it needn’t to be virtualized,

bypass. Otherwise go to step 3.

3. Mark the file delete flag on the virtual file tree node.
4. In PreCleanup operation, if the file has been virtualized and has been marked for deletion, then

sand a request to delete the file to file system.

File Renaming

The following figure shows the interaction on file renaming virtualization (the file has not been

virtualized).

Rename File(User-Mode)
Pre-SetinformationFile File System

- T
Rename File |
N
>

|

| Query and return the file has not been virtualized

| |
Create the virtual dir and a dummy file

Complete the create

E:::::::) Mark the file rename flag

Complete Rename File

The following figure shows the interaction on file renaming virtualization (The file has been virtualized).

Rename File(User-Mode)
Pre-SetInformationFile File System

Rename File

T

|

|

T

|

| |
|

: E:::::::) Query and return the file has been virtualized
|

|

|

|

|

|

|

|

|

_Y__ |

Rename the virtual file

__Y___

Complete the rename

T

Complete Rename File |

1

The following figure shows the main flow of the rename file operation:

“‘/PreSetinformationFile
\ (Rename)

//////Check ifin exclusion Y
list or not
N
" Checkif need Thread N

virtualization or not

Y — ~_ N
—<If the file has been virtualized
\\\/
\ 4 A\ 4

Create a dummy file in the
virtual file storage

v

Mark the file renamed flag

The status is
passthrough

|

Rename the virtual file

A 4

[Return the status

As shown in the figure, the PreSetinformationFile(Rename) routine summarizes in the following list:

1. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
Check if the thread which renames the file needs to be virtualized. If it needn’t to be virtualized,
bypass. Otherwise go to step 3.

3. If the file has been virtualized, rename the virtual file. Otherwise create a dummy file in the virtual
file storage. The dummy file is not a virtual file. It has the same attributes and size with the real file.
It is only a placeholder for the PreDirectoryControl operation. The dummy file can improve the
performance for the rename operation because it doesn’t copy data from the real file and only set
the file attributes and size to the dummy file.

PreDirectoryControl
The following figure shows the interaction on directory control virtualization:

Query Directory Information
(User-Mode) Pre-DirectoryControl File System

Query Directory

N A

Query Virtual Directory

|

|

r

Return the query virtual directory
1

I
I
I
E> Merger Information |
I
I
I
I
I

T

|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: Complete Query Directory

The following figure shows the main flow of the directory control operation:

| PreQueryDirectory

\ 4

Query the real directory on disk

\ 4

Query the virtual directory in
the virtual file storage

\ 4

Merger the results

\ 4

| Return the status

As shown in the figure, the PreDirectoryControl routine summarizes in the following list:

1. Query the real file information in the real directory on disk.
2. Query the virtual file information in the virtual file storage.
3. Merger the query results (include dummy files and exclude duplicate files).

PreCleanup
The following figure shows the interaction on file cleanup virtualization.

Close File Handle (User l i1
Mode) Pre-Cleanup File System

Close File Handle

v__ |

Delete the virtual file which marked for deletion

|
|
!
|
|
: | Return the delete operation
|

|

|

|

|

|

|

;:::::::) Cleanup Resources

Cémplete Close File Handle

[

The following figure shows the main flow of the cleanup operation:

(PreCleanup

o
_— —

— —

o —
__—Checkifin exclusion ~_
list or not

S —

virtualization or not

virtualized

N T
__— Check if the file has been
marked deleted flag

e

Sand a request to delete the file
to file system

A 4

Close the ShadowFileObject

\ 4

Cleanup resources

A\ 4

S

| Return success status

As shown in the figure, the PreCleanup routine summarizes in the following list:

1. Check if the file path is in the exclusion list or not. If it is in the list, bypass. Otherwise go to step 2.
2. Check if the thread which operates cleanup needs to be virtualized. If it needn’t to be virtualized,
bypass. Otherwise go to step 3.

3. If the file has been virtualized and has been marked for deletion, then sand a request to delete the
file to file system.

4. Close the ShadowFileObject which is created in the PreCreateFile operation.

Cleanup other resources.

Registry Virtualization:

Registry virtualization is handled similarly to File System Virtualization on the Filter Driver level. We
capture all necessary registry events.

AX xcitium

Xcitium, formerly known as Comodo Security Solutions, is used by more than 3,000
organizational customers & partners around the globe. Xcitium was founded with
one simple goal — to put an end to cyber breaches. Our patented Xcitium Essentials
ZeroDwell technology uses Kernel-level API virtualization to isolate and remove threats
like zero-day malware & ransomware before they cause any damage to any endpoints.
ZeroDwell is the cornerstone of Xcitium’s endpoint suite which includes pre-emptive
endpoint containment, endpoint detection & response (EDR), managed detection
& response (MDR), and managed extended detection and response (M/XDR). Since
inception, Xcitium has a track record of zero breaches when fully configured.

AWARDS & RECOGNITION

@
Managed Detection and Response
ot @ v s==m AMVTEST CYBERSECURITY
Easiest — h mmn-mu-mlf-suu ity In ;mm Excellence Awards
Admin Implementation £
SPRING

& 2022

/STOMER SUCCESS REPOR

SCawards [\%iee

sssssssssssssssssssss

OUR CUSTOMERS

_ LA . . @Shen Lt Insight o worldrelief MicrOdium
= COGENT - . 0e) 0 seesiecw
= ‘4
FacficClimes, NCER O CHESTNUT : ~ . The uPs store @ STAR VALLEY HEALTH
50 ‘.\ HEALTH SYSTEMS 4 ‘ ‘ WWF .
—,oa .
A - ALM ZInfodat. THTREE {¥colortech _.f'_-.e@& Ne;twlgg

US: 646-569-9114
CA: 613-686-3060

EMAIL

sales@xcitium.com

support@xcitium.com

VISIT

200 Broadacres Drive,
Bloomfield, NJ 07003
United States

OXCITIUM INC. ALL RIGHTS RESERVED

	What is behind scenes of Xcitium’s patented “Kernel API Virtualization”?
	Xcitium’s Solution: Kernel API Virtualization
	Create File
	Open Existing File

	Virtual File Maintenance
	File System Virtualization:
	PreCreateFile
	Create File
	Open File

	PreReadFile
	PreWriteFile
	PreSetInformationFile
	File Deletion
	File Renaming

	PreDirectoryControl
	PreCleanup

	Registry Virtualization:

